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Two-dimensional strain from the orientation of lines in a plane
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Abstract—A fast method for the analysis of two-dimensional strain from the preferred orientation of lines is
presented. It is assumed that grain boundary surfaces. or other surfaces. of undeformed polycrystalline rocks
have no preferred orientation. that is. that the orientation of surface elements is random. Homogeneous strain
of the rock volume is then assumed to produce a preferred orientation of the surface elements. On a
two-dimensional section. this appears as preferred orientation of line segments. A simple way of quantifying the
preferred orientation of line segments and a general interpretation in terms of two-dimensional strain is shown.
This strain analysis. which is based on the change of orientation of surface as a function of strain. is compared to
Fry’s method that uses the change of relative position of centrepoints as a measure for strain.

INTRODUCTION

ON A THIN section of a polycrystalline rock, mineral
grains and matrix are visible as areas; grain boundary
surfaces appear as lines or outlines. Although it is by the
outlines that we recognize shapes, it is not the outlines
themselves that are used for analysis. Commonly, simple
geometric approximations are used instead of the actual
shape. This approach has yielded a number of powerful
techniques of strain analysis (e.g. Ramsay 1967,
Shimamoto & Ikeda 1976). These methods will here be
referred to as shape methods.

It is the purpose of this paper to show that if one uses
the surfaces as they are rather than substituting
simplified shapes. one is rewarded by a simple and
straightforward method of two-dimensional strain
analysis.

Table 1 shows the svmbols and definitions used in this
paper. It is assumed that the orientation of surfaces in
the undeformed rock is random, and that on any section
the orientation of the corresponding lines is random too.
In other words, for large samples of undeformed rock
there should be an equal fraction of lines being oriented
within every interval Aai of the angle of orientation a.

On a plane of section, which will here be referred to as
the x—y plane. the angle of orientation i of a straight line
is given by the slope of the line with respect to the x-axis.
The orientation of a curved line. whose slope changes
continuously. is defined at each point by the slope of the
tangent. In order to define a ‘general’ or ‘average’
orientation of a curved line. the latter is approximated
by a set of short straight line segments. Orientations and
lengths of the line segments are measured; and a histo-
gram of total length per increment of angle af is obtained
by adding the lengths of all segments for each interval
Aai. The interval of a/ where the total length of line
segments has a maximum, that is the mode of the
histogram, corresponds to the "average’ orientation of
the set of lines. that is to the preferred orientation ap.

In the undeformed rock. orientations of surfaces are
assumed to be random. Accordingly, the orientations of

lines in a two-dimensional section are random too, and
the total length of line segments is constant for all
intervals Aai, that is, there is no preferred orientation,
ap.

For the method presented in this paper to be applic-
able, one has to assume that a preferred orientation of
lines is induced by homogeneous strain, such that on any
section the preferred orientation of lines is a function of
the respective two-dimensional strain only. Finite strains
that are calculated by the method presented here always
refer to the state of random orientation of surface as the
undeformed state.

PROJECTION OF LINES AND DISTRIBUTION
FUNCTIONS

The basic operation of the proposed strain analysis,
which will be called the projection method, is to project

sets of straight lines or line segments on the x-axis while

Table 1. Symbols used

Straight line segment of unitlength

Number of straight line segments

Two-dimensional outline of shape.i.e. closedline: § = 35
ai Angle of initial orientation of line in v—y plane., measured
counterclockwise between line and positive x-axis:

{0° < ai < 180°}

Ly~

Aai Interval of angle ai

a Angle of rotation of line or set of lines. measured counter-
clockwise from positive x-axis: {0° < a < 180°}

Aa Incrementof angle

n Number of increments Aa per 180° rotation: n = 180°/Aa

xmin Minimum x-coordinate of shape $. x min = x min (a)

X max Maximum x-coordinate of shape §: x max = x max (a)

P Lengthof projectionofline s: P = P(a)

A Total length of projection of set of lines S: A(a) = X P(a)

B Simple projection of shape §: B(a) = x max () — xmin («)
amin Angle a where A(a) or B(a) has aminimum

amax Angle a where A(a) or B(a) has amaximum

ap Angle of preferred orientation of set of lines

h(al) Distribution function of ai

* Convoelution

0 Angle of orientation of strain ellipse. measured between the
long axis and the positive x-axis

o Angle of shear
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Fig. 1. Projection P(a) of a single straight line, 5; initial orientation, i
= 30°. (a) Angle of rotation a = 0°; (b) a = 45°.

the sets are rotated through an angle of 180°. The
projection of a single line, s (Fig. 1), is given by

P(a) = s|cos (ai + )|, )

where the length of the line is s, ai is the initial orienta-
tion of the line with respect to the x-axis, and « is the
angle of orientation of the line, measured counter-
clockwise from the positive x-axis. The projection of a
set of m lines is given by

A(a) = TP(a), (2)

where A(a) depends on the number ot lines in the set, m,
their length, s, their initial orientation, i, and the angle
of rotation, . However, A(a) does not depend on the
position of the line segments in the x—y plane.

Unless all lines of the fabric are perfectly parallel, the
individual orientations, ai, of various lines will differ.
The distribution function A(ai) describes the distribution
of the orientation of line segments s. h(ai) represents the
density of probability of a line segment being initially
oriented at an angle ai. For the discussion of the distribu-
tion functions it will be assumed that all line segments
are of unit length. If all line segments are parallel, as
shown in Fig. 2(a), the distribution function is called
monodisperse

= 1.00, if ai = ap

= 0.00, if ai # ap. (32)

h(ai){
A preferred orientation of lines is represented by a
dependence of A(ai) on ai, for example a normal or
circular normal distribution function corresponding to a
symmetric unimodal distribution, or by a general, even
polymodal distribution function if more than one pre-
ferred orientation exists in the section. As an example,
for a preferred orientation as shown in Fig. 2(b), the
normal distribution function is given by

h(ai) = 1/(V27 o) exp [— (u — ai)*(20%)]. (3b)

If the lines are randomly oriented, as shown in Fig.
2(c), the distribution function is called uniform.

h{ai) = constant for all ai.

(c)

If the distribution function A(«i) is known, the projec-
tion of a set of straight line segments of unit length,
A(a), can be calculated; and equation (2) is replaced by
the convolution of the projection function of a single
line, P(«), and the distribution function, A(ai) (Panozzo
1983)

A(a) = Pla)*h(ai).
A(a) = Jh(ai)P(a — ai)dai.

(4a)
(4b)
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Fig. 2. Sets of straight lines and corresponding distribution functions,
h(ai); a = angle of retation. (a) Parallel lines; monodisperse distribu-
tion function; (b) Lines with preferred orientation: normal distribution
function; u = 120°, ¢ = 10°; (c) Randomly oriented lines; uniform
distribution function. See text for further discussion.

Figure 3 shows projection functions for sets of unit line
segments whose initial orientations are described by the
monodisperse (M), normal (P), and uniform distribution
function (U). A(«) is constant for all angles of rotation,
a, if the distribution function A(«ai) is uniform, that is, if
the orientation of lines is random. A(«) approaches P(«)
as the distribution function becomes narrower, for
example, as the standard deviation, o, of the normal
distribution function [equation (3b)] decreases. If A(ai)
is the monodisperse distribution function, A(a) is essen-
tially equal to P(«).

The ‘undeformed state’ is here represented by a fabric
in which the orientation of lines is random, that is, whose
projection A(«) is constant for all a. Homogeneous
deformation yields a preferred orientation of lines, that
is, A(a) is not constant anymore, but depends on «. In
this paper, the function describing A(a) will be given
and interpreted in terms of the two-dimensional strain
ellipse. In order to do so, projections of ellipses have to
be considered first.

If closed lines, that is, shapes are to be projected two
types of projection have to be distinguished: A(a), the
total projection; B(a), the simple projection or Feret
diameter (Fig. 4). A(a), the total projection corresponds
to the projection function of a set of straight line seg-
ments by which the shape is approximated. These need
not be of unit length. B(a), on the other hand, is the
difference between the maximum and the minimum

A(Q)/ A(@) max
c 1
2 u U hla;)= 100 for all a;
¢ 8
4 2
a =] 1 {(p-a;)
. 6 P h(@)sz — - exp(-——1—~
s BT ( 202 )
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Fig. 3. Relative projection function, A(a)/A(a) max. of sets of straight

lines versus angle of rotation a: ap = 0°; axial ratio b/a = 0.00. M =

monodisperse distribution [h(ai)], parallel lines; P = normal distribu-

tion {A(ai)], lines with preferred orientation; U = uniform distribution
[A(ai)], lines are.randomly oriented.
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B(a) = xmax{@) - xmin(a)

Fig. 4. Projection of ellipse that is approximated by eight straight-line
segments: af = 0% « = (07 Total projection, A(a). and simple pro-
jection. B(a). are shown schematically. ¢ and b = axes of ellipse:
I8 = digitized points: x min and ¥ max = minimum and maxi-
mum x-coordinates of ellipse. See text for further discussion.

x-coordinate. x max and x min, of the shape S. In so far
as the maximym and minimum x-coordinate of a non-
circular shape depend on the orientation of the shape
with respect to the x-axis, B(a) is a function of the
rotation «.

B(a) = ymax (a) — x min (a). (5)

As can be seen from Fig. 4. if the shape is strictly convex
the total projection is always twice the simple projection,
irrespective of the angle of rotation. a. or the curvature
of the outline. The projection of a set of lines by which a
convex shape is approximated, A(a), is therefore equal
to 2B(a). For elliptical shapes the simple projection
B(«) is calculated from the axes g and b of the ellipse and
the orientation. ai, of the long axis, a, with respect to the
y-axis. As the ellipse is rotated in the x—y plane the
simple projection changes (Panozzo 1983).

B(a) =2\ a cos” (@i + a) + b sin" (ai + @). (6)

The projection of an ellipse whose long axis is parallel to
the v-axis. that is. ai + a = 0°, is equal to 24 and is the
longest possible projection. If the long axis is parallel to
the y-axis. that is. ai + a = 90°. the projection of the
ellipse is equal to 2b which is the shortest possibie
projection. Since ellipses are strictly convex shapes. the
following relation holds

A(a) min/A(a) max = B(a) min/B(a) max = b/a. (7)

Figure 5 shows the projection functions of ellipses with
various axial ratios b/a and an initial orientation parallel
to the x-axis. ai = (°. Note that ellipses whose axial ratio
b/a equals0.00. are lines. If a > 0° or i < 0°. the curves
are shifted to the left or right, respectively. The angle of
initial orientation. a!. is obtained from the minimum and
maximum value of A(a) through the following relations

(8a)
(8b)
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Fig. 5. Simple projection. B(a). of ellipses. Relative length of projec-
tion, B(a)/B(a) max. vs angle of rotation, a. for ellipses of various
axial ratios b/a: ai = (°.

PROCEDURE

The first step in the analysis by the proposed method
is to digitize the lines that represent the surface of
interest on a digitizing table. Strings of x—-y coordinates.
which represent one continuous line each, are transfer-
red to a Fortran programmable computer. If k is the
number of points that are digitized on a given line. k — 1
is the number of straight line segments by which the line
is approximated. The Fortran program SURFOR (Sur-
face orientation) carries out the proposed analysis. The
program asks for the size of increments A of the angle
of rotation. Aa is chosen according to the desired angular
resolution. In the course of the analysis, the lines are
rotated through an angle of 180°: therefore the number.
n. of angles a at which the total projection of the line
fabricis to be evaluated is equal to 180°/A«. Itis unneces-
sary to rotate the shapes through an angle of 360°
because A(a) = A{a + 180°). Ateach of the nincrements
of rotation, the total projection A(a) is calculated by
summing up the projection of all the straight line seg-
ments.

As an example, the shape shown in Fig. 4 is digitized
and analyzed by the program SURFOR. The number of
strings is 1. the number of digitized coordinate points is
9, as point 1 has to be digitized twice. If instead of one
continuous line the 8§ individual lines are digitized sepa-
rately, 8 strings with 2 points each are created. However,
the number of line segments (8) and the total projection
A(a), are the same in both cases. Figure 6 shows output
for analysis with increments of rotation. Aa. of 10°.
Beneath name, date and magnification appears the
number of straight line segments used for the analysis.
Values of total length of projection, mean length, vari-
ance and standard deviation are printed for each incre-
ment of rotation. The histogram represents the length of
total projection as horizontal bars vs a. the angle of
rotation. Figure 6 shows 18 values of A(«) evaluated at «
= 10°.20°. ... 180°. Ata = 60° the projection is minimal,
that is the preferred orientation. ap. of the eight lines.
which is equivalent to the orientation, ai. of the long axis
of the ellipse. is 30° [see equation (8a)].
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*xxx> ELLB.ROS

LENGTH OF STRAIGHT LINE SEGMENTS IN MM

DATE? 8-82
MAGNIFICATION? 1 TIMES
NUMBER OF PROJECTED LINES SEGMENTS! 8
ANGLE TaTAL MEAN VARIANCE ST.DEV.
10 724.3877 ?0.54B45 2924,01542 S4,07417
20 691.5234 86.44045 1803.02283 42 ,456202
30 637.4559 79.70699 1247.18213 35.31547
40 $64.4207 70.55259 1323.50%964 36.38007
S50 523.7021 63.21276 1323.27502 36,37685
60 S21.7486 65.21B97 834,40577 28.88954
70 ©23.9480 £5,24350 1316.75964 36.28718
80 $64,1365 70.51707 1325,47253 36.,40704
70 637.5422 79.69278 1244.69861 35.28028
100 691.5839 86.44798 17935.76782 42,37650
110 724,6199 90.57749 2912.239%50 S3.96517
120 778,9187 97.36484 3289.18237 57.35139
130 845,3282 105.6464603 2859.47021 53.47401
140 886.0625 110.75781 2577.74292 50.77148
150 899.8844 112,48%55 2477.96436 49.,77916
140 886.3740 110.79675 2572.14577 50,71653
170 84S5,9417 105.74271 2848.98999 53.37593
180 779.8156 97.47695 3275.06006 57.22814
HISTOGRAM: TOTAL LENGTH OF FROJECTION VERSUS ANGLE OF ROTATION
900 MM
10 KXXXEAXEXKKAERREKKKKREKRRKKRER KK RRX KK KKK
R S 3 335225333338 333 3333323323333 2433323
30 KEERKERERERKXRXXKERKERRRARKEEKLXXRK K
40 KREERERRKREIKKKERKEXXKKRRERRKNK

9] EEREEEREEERRRERRXKKEEEKERKKK
KREKRKKRRRERERRKKKKERERKK KKK
EXRKRERXRERERKKER
HRRRRREKRRKRKKKKRREEXNRKKREERE K
KEKKKAKREREEIRKXARXERERRRKKRKRRRER K
KRXEKKRERRRKKRRKKKERREXKRRKRKL K KRN KEEX
AXRRKAEKEERRERERREXNRRERKKKRKERRRR R KKK K
KERXKEREERRERXEXREARERRAKRRRERRRKX KX KR ERRXK
KAREKREREREKRKKKKEKEEKEKARRRERRKKAKEREERRKEK KR
AXXXRERKEEXRERXXXKRRXKKXRREXRE KRR KRR X KKK ERRERREK
KRRKEREEEXRXRRKEREREEXKRRREERRR KRR KR ERE KKK KKK KKK K
KEXRREEKEERRRRKREKRKKERRERRREXRK XK B RR KKK RE KKK
KEREREEERRKKEKKERREKKENERRKKKKEERERXRRRK KKK KKER
EXXEKRRKKKREERRKKKXKAKAEKEERERKKKK KK R KKK KKK

180

Fig. 6. Sample output of computer program SURFOR. Shape analyzed
is ellipse shown in Fig. 4; increment Aa = 10°. See text for further
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INTERPRETATION OF THE PROJECTION
FUNCTION IN TERMS OF TWO-DIMENSIONAL
STRAIN

It has to be demonstrated that the axes a and b of the
finite strain ellipse and the angle «i between a and the
positive x-axis, corresponding to 8 (Ramsay 1967), can
be derived from the curve A(a) of a deformed fabric.

Consider a pattern of randomily oriented lines (Fig.
7b). These lines can be linked such that they form an
isometric polygon. The latter approaches the shape of a
circle if the number of line segments is large (Fig. 7a).
Owing to the small number (24) of straight-line segments
the representations in Fig. 7 are of schematic value only.
The total projection A(«) of the circle and of the ran-
domly oriented lines is the same, as is shown in Fig. 7(c).
A(a) is constant for all « and is equal to twice the
diameter of the circle. If the fabrics shown in Figs. 7(a)
& (b) are subjected to the same homogeneous deforma-
tion, the fabrics shown in Figs. 7(d) & (e) are obtained.
The deformation affects the individual line segments
according to their orientation «i, irrespective of their
position in the x—y plane. Therefore, the projection
function A(«) of the deformed random line pattern and
the deformed circle are identical. The projection func-
tion is shown in Fig. 7(f). By definition, the shape shown
in Fig. 7(d) is the finite strain ellipse. For an ellipse, A(a)
is equal to 2B(a); and the ratio A(a) min/A(a) max is
equal to the axial ratio b/a of the ellipse. Thus the ratio
A(a) min/A(a) max of the deformed randomly oriented
line pattern is equal to the axial ratio of the finite strain

discussion. ellipse.
The orientation of the strain ellipse with respect to the
reference coordinate system is given by equation (8). In
Fig. 7(f). @ min = 180™and @ max = 90°; therefore ap
or 6 is 90°. The ratio A{a) min/A(a) max is 0.50. The
h 10 sarzersvzaeens . Ala
f Yy — -~ 20 rel. A(a)
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Fig. 7. Correspondence between randomly positioned lines and closed lines. (a) and (b) Undeformed fabrii.
(c) Computer output. (d) and (e) Deformed fabrics. (f) Computer output. Finite strain axes:a = 1.4:b = 0.7; angle 6 = 90°;
increment Aa = 10°. See text for further discussion.
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absolute magnitude of the ellipse axes, b and a, can be
determined only if at least one elongation can be
measured. Whether this is possible in practice depends
on whether the undeformed fabric can be observed and
compared to the deformed one.

Deformation of the fabrics shown in Figs. 7(a) or (b)
changes both the orientation and the length of the line
segments. Thus the individual line segments shown in
Figs. 7(d) or (e) are not of unit length anymore. This
does not invalidate the analysis because change of length
of line segments is taken into account in that the lengths
of the individual segments, rather than their number are
added. Indeed. if the deformation of the fabrics shown
in Figs. 7(a) & (b) consisted of rigid rotation of the lines
only, leaving the lengths of lines unaltered, the method
proposed here would be inapplicable.

APPLICATION AND DISCUSSION

It is important to define the ‘undeformed state’ of a
rock as it is the reference state with respect to which the
finite strain is defined. The ‘undeformed state’ is often
equated to a state of randomness or isotropy, to an
absence of preferred orientation or even an absence of
fabric. But a general randomness or general preferred
orientation does not exist. It has to be specified whether
the randomness pertains to position or to orientation. A
fabric of isotropic anticlustered positions of centrepoints
of particles (Fry 1979) and of random orientations of
particle surface need not coincide. Two aspects of the
definition of the undeformed state merit special atten-
tion: (a) the distinction of random position of particles vs
random orientation of particle surface and (b) the dis-
tinction of preferred orientation of volumes vs preferred
orientation of surface.

Isotropic position of particles versus random orientation
of surface

A method of strain analysis based on anticlustered
isotropic spatial distributions of centrepoints has been
discussed by (Fry 1979). Such spatial distributions exist
in nature because particles or grains have finite dimen-
sions, a fact which inhibits centrepoints from lying within
a distance smaller than one grain diameter. The concept
of anticlustered spatial distributions is here extended to
cases where the particles have no volume at all but are
small planar surface elements.

Deformation changes the spatial relationship between
centrepoints of particles or surface elements by shorten-
ing the distances parallel to the direction of compression
and by lengthening them parallel to the direction of
extension. If one assumes that the change of relative
position of centrepoints refiects the state of deformation,
the latter can be determined by using the method
described in Fry’s paper. In many cases. this type of bulk
deformation is also reflected by a change of shape. for
example, flattening of the particles contained in the rock
volume. However. if the viscosity of particles is much
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Fig. 8. Comparison of projection method with method after Fry
(1979). Analysed line pattern (left); plot of centrepoints (top right);
output of program SURFOR (bottom right). (a) Isotropic position,
random orientation. (b) Anisotropic position. random orientation. (c)
Isotropic position. preferred orientation. (d) Anisotropic position.
preferred orientation. See text for further discussion.

higher than the viscosity of the matrix. the particles
change their relative position with respect to one another
without appreciable change in shape. In such cases the
strain determined from the deformation of the particles
does not reflect the bulk strain of the rock.

Figure 8 shows four patterns of short lines (e.g. cracks)
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in the x—y plane. To the right of each the results of two
different methods of strain analysis are presented: Fry’s
method (top) and the projection method described here
(bottom). If the isotropic distribution of centrepoints is
used to define the undeformed state, Figs. 8(a) & (¢)
appear to be undeformed and Figs. 8(b) & (d) appear to
be strained, with the finite strain ellipse having an axial
ratio b/a of 0.50.

Based on the concept of random orientation of lines,
Fig. 8 is interpreted differently. If the preferred orienta-
tion of lines is assumed to represent bulk strain, Figs.
8(a) & (b) appear undeformed whereas Figs. 8(c) & (d)
display a finite strain, where b/a is equal to 0.50. Recon-
struction of the undeformed state can be attempted by
reversing the deformation. ‘Unstraining’ Fig. 8(d) by
inverting the strain obtained from Fry’s method or the
one obtained from the projection method produces an
‘undeformed’ state equivalent to Fig. 8(a). But if the
strains of Figs. 8(b) & (c) as determined by the two
different methods are reversed, the resulting ‘un-
strained’ patterns are not identical nor do they corre-
spond to the fabric shown in Fig. 8(a).

This demonstrates clearly the necessity of defining the
undeformed state in terms of either isotropic position or
random orientation of surface. Although the two often
coincide, this is not necessarily so; values of strain that
are obtained by the two different methods may be
different, reflecting an initial fabric or strain partitioning
during deformation. If strain measurements of both
methods coincide one can be more confident that the
obtained values reflect bulk strain. In how far one of the
two conditions, isotropy of position or random orienta-
tion of surface, is at all realized in nature is yet another
question which will not be addressed here.

Preferred orientation of surface vs preferred orientation
of shape

In any strain analysis it is assumed that the deforma-
tion of rocks is homogeneous within the volume of
interest, and that the geometrical elements that are
affected by it have existed before deformation started.
Elements that are newly created in the course of defor-
mation, for example, pressure-solution surfaces, grain
boundaries and cracks, have to be excluded from the
analysis.

In absence of contradictory evidence it is often
assumed that grains or particles of the undeformed rock
are isometric. The grain shapes of the deformed rocks
are then approximated by ellipses, and the grain shapes
of the undeformed rock are assumed to be circles.
Alternatively, the undeformed state may be defined by
non-isometric shapes whose long axes are randomly
oriented. In general. both of these definitions of the
undeformed state are equivalent to a state of random
orientation of surface. Therefore, if the state of random
orientation of surface and the state of isometric grain
shapes or random orientation of non-isometric particles
coincide, the projection method described here should
yicld the same analytical results as any shape method.

R. PaNoOzzO
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Fig. 9. Deformation of a set of ellipses by simple shear. (a) Random

orientation of long axes: normal distribution of axial ratios: b/a = 0.50

% 0.20: uniform distribution of lengths of long axes: {0.00 < a < 1.00}:

anticlustered isotropic distribution of centrepoints. (b) Deformed

fabric: & = 45°. (¢) Projection function of detormed ellipses: Aa = 10°.
See text for further discussion.

There are cases where the alternative use of the pro-
posed method for strain analysis may be favoured.

(1) Strain analysis by any one of the shape methods
requires ellipses to be fitted to the shapes. If the outlines
are only remotely elliptical the fit of ellipses may be
difficult and/or biased. The projection method requires
no such fit.

(2) If the strain is small. deviation from sphericity is
small and a large number of measurements of ellipse
axes is needed. By digitizing the outlines as is proposed
here, alarge data base can be assembled in a short time.

(3) The analysis of strain from a pattern of deformed
ellipses is made easy when compared with shape
methods that make use of axial ratios and orientation of
long axes (e.g. Ramsay 1967, Shimamoto & Ikeda 1976).
Figure 9(a) shows a set of ellipses of different size and
axial ratio. They were created using a random number
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generator: distribution of angles ai and of lengths is
uniform, distribution of axial ratios is normal with the
average axial ratio being 0.50 & 20. When deformed by
simple shear, the pattern shown in Fig. 9(b) is created.
Digitization and evaluation of the fabric take about
20-30 minutes after which the computer output shown in
Fig. 9(c) is obtained. A(a) min/A(a) max = 2300 mm/
6200 mm = 0.37. The minimum of A(a) is at 55-60°;
from this orientation ap of the long axis of the strain
ellipse is inferred to be 30-35°. Following equations
(3-67) and (3-70) given by (Ramsay 1967), and using ¢ =
45°, the axial ratio of the strain ellipse comes out to be
0.38, and the angle 6. which corresponds to ap, comes
out to be 32°. Better coincidence of the results of
SURFOR and the theoretical values can be achieved if
smaller increments. A«, of rotation are chosen for
SURFOR.

(4) The shape methods are restricted to elliptical
shapes. The projection method on the other hand is
generally applicable whether shapes are elliptical or not.
Since only the orientations of line segments are con-
sidered it does not even matter whether the lines are
open or closed or whether they are individual lines such
as cracks or a connected network such as grain bound-
aries in crystalline rocks. Using this method, strain
analysis is possible even if the long dimension of particles
is larger than the field of observation on a thin section.

SUMMARY AND CONCLUSIONS

A new method for the analysis of two-dimensional

strain has been introduced. The method is based on
approximating, that is, digitizing outlines of shapes or
other lines by sets of small straight lines. The latter are
projected on the x-axis while being rotated through an
angle of 180°. From the projection function A(a)
(= total length of projection vs angle of rotation) the
axes of the two-dimensional finite strain ellipse and their
orientation with respect to a reference x—y coordinate
system is derived very easily. The method is sensitive to
the orientation of lines but not to their position in the x-v
plane. The method is therefore complementary to Fry’s
(1979) method which uses the anisotropy of an anticlus-
tered spatial distribution of centrepoints as a measure of
strain.

By using digitized data and the Fortran program
SURFOR, strain analysis is achieved in a short time.
The proposed method is general in that it applies to all
lines or outlines of shapes. Finite strains can be derived
from all sets of shapes or line systems, including, for
example sets of different ellipses, provided their surface
was initially randomly oriented.
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