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A b s t r a c t - - A  fast method for the analysis of two-dimensional strain from the preferred orientation ot lines is 
presented. It is assumed that grain boundary surfaces, or other surfaces, of undeformed polycrystalline rocks 
have no preferred orientation, that is. that the orientation of surface elements is random. Homogeneous  strain 
ol the rock volume is then assumed to produce a preferred orientation of the surface elements. On a 
two-dimensional section, this appears as preferred orientation of line segments. A simple way of quantifying the 
preferred orientation of line segments and a general interpretation in terms of two-dimensional strain is shown. 
This strain analysis, which is based on the change of orientation of surface as a function of strain, is compared to 
Frvs  method that uses the change of relative position of centrepoints as a measure for strain. 

INTRODUCTION 

ON A TH|N section of a polycrystalline rock, mineral 
grains and matrix are visible as areas; grain boundary 
surfaces appear as lines or outlines. Although it is by the 
outlines that we recognize shapes, it is not the outlines 
themselves that are used for analysis. Commonly,  simple 
geometr ic  approximations are used instead of the actual 
shape. This approach has yielded a number  of powerful 
techniques of strain analysis (e.g. Ramsay 1967, 
Shimamoto & Ikeda 1976). These methods will here be 
refer red  to as shape methods. 

It is the purpose of this paper to show that if one uses 
the surfaces as they are rather than substituting 
simplified shapes, one is rewarded by a simple and 
straightforward method of two-dimensional strain 
analysis. 

Table  1 shows the symbols and definitions used in this 
paper.  It is assumed that the orientation of surfaces in 
the undeformed rock is random, and that on any section 
the orientat ion of the corresponding lines is random too. 
In other  words, for large samples of undeformed rock 
there should be an equal fraction of lines being oriented 
within every interval Aai of the angle of orientation a. 

On a plane of section, which Will here be referred to as 
the x-y  plane, the angle of orientat ion t~i of a straight line 
is given by the slope of the line with respect to the x-axis. 
The orientation of a curved line. whose slope changes 
continuously,  is defined at each point by the slope of the 
tangent. In order to define a 'general '  or 'average'  
orientation of a curved line. the latter is approximated 
by a set of short straight line segments. Orientations and 
lengths of the line segments are measured;  and a histo- 
gram of total length per increment of angle cd is obtained 
by adding the lengths of all segments for each interval 
Aai. The interval of ai where the total length of line 
segments has a maximum, that is the mode of the 
histogram, corresponds to the "average" orientation of 
the set of lines, that is to the preferred orientat ion up. 

In the undeformed rock. orientations of surfaces are 
assumed to be random. Accordingly, the orientations of 
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lines in a two-dimensional section are random too, and 
the total length of line segments is constant for all 
intervals Aai, that is, there is no preferred orientation, 
otp. 

For the method presented in this paper  to be applic- 
able, one has to assume that a preferred orientation of 
lines is induced by homogeneous  strain, such that on any 
section the preferred  orientation of lines is a function of 
the respective two-dimensional strain only. Finite strains 
that are calculated by the method presented here always 
refer  to the state of random orientation of surface as the 
undeformed state. 

PROJECTION OF LINES AND DISTRIBUTION 
FUNCTIONS 

The basic operat ion of the proposed strain analysis, 
which will be called the projection method,  is to project  
sets of straight lines or line segments on the x-axis while 

Table 1. Symbols used 

S 

m 

S 
ai 

Aai 
o~ 

Aot 

n 

xmin 
x max 
P 
A 
B 
c~min 
a max 
ap 
h(ail 

Straight line segment of unit length 
Number  of straight line segments 
Two-dimensional outline of shape, i.e. closed line: S = Es 
Angle of initial orientation of line in x-y plane, measured 

counterclockwise between line and positive x-axis: 
{0° < c~i< 180 °} 

Interval of angle ai 
Angle of rotation of line or set of lines, measured counter- 

clockwise from positive x-axis: {0 ° < a < 180 °} 
Increment of angle a 
Number  of increments Ac~ per 180 ° rotation: n = 180°/Aa 
Minimum x-coordinate of shape S: x rain -- x rain (a) 
Maximum x-coordinate of shape S: x max = x max (a) 
Length of projection of line s: P = P(a) 
Total length of projection of set of lines S: A(a)  = ~P(c~) 
Simple projection of shape S: B(o~) = x max (a) - x rain (a) 
Angle a where A(a)  or B(~) has a minimum 
Angle a where A(a)  or B(a) has a maximum 
Angle of preferred orientation of set of lines 
Distribution function of oa 
Convolution 
Angle of orientation of strain ellipse, measured between the 

long axis and the positive x-axis 
Angle of shear 
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Fig. l. Projection P(a) of a single straight line, s; initial orientation, ~i 
= 30 °. (a) Angle of rotation a = 0°; (b) a = 45 °. 

the sets are rotated through an angle of 180 ° . The 
projection of a single line, s (Fig. 1), is given by 

P ( a )  = s (cos (ai  + a ) l ,  (1) 

where the length of the line is s, a i  is the initial orienta- 
tion of the line with respect to the x-axis, and a is the 
angle of orientat ion of the line, measured counter- 
clockwise from the positive x-axis. The projection of a 
set of m lines is given by 

A(~) = V~p(a), (2) 

where A(a) depends on the number  ot lines in the set, m, 
their length, s, their initial orientat ion,  czi, and the angle 
of rotation, a. However ,  A(a)  does not depend on the 
position of the line segments in the x-y plane. 

Unless all lines of the fabric are perfectly parallel, the 
individual orientations,  ai,  of various lines will differ. 
The  distribution function h(od) describes the distribution 
of the orientat ion of line segments s. h(ai) represents the 
density of probabili ty of  a line segment being initially 
oriented at an angle ai. For  the discussion of the distribu- 
tion functions it will be assumed that all line segments 
are of unit length. If all line segments are parallel, as 
shown in Fig. 2(a), the distribution function is called 
monodisperse 

== 1.00, if cti = ap (3a) 
h(od) 0.00, if a i  ~ t~p. 

A preferred orientat ion of lines is represented by a 
dependence of h(ai) on ai,  for example a normal or 
circular normal distribution function corresponding to a 
symmetric unimodal distribution, or by a general,  even 
polymodal  distribution function if more than one pre- 
ferred orientation exists in the section. As an example,  
for a preferred orientat ion as shown in Fig. 2(b), the 
normal distribution function is given by 

h(ai) = 1/(~/2--~u) exp [ - ( / x  - a i ) 2 / ( 2 o r 2 ) ] .  (3b) 

If the lines are randomly oriented,  as shown in Fig. 
2(c), the distribution function is called uniform. 

h(ai) = constant for all oti. (3c) 

If the distribution function h(ai) is known, the projec- 
tion of a set of straight line segments of unit length,  
A(a) ,  can be calculated; and equation (2) is replaced by 
the convolution of the project ion function of a single 
line, P(a), and the distribution function, h(ai) (Panozzo 
1983) 

A(a) = P(a)*h(ai). (4a) 
A(a) = f h(ai)P(a - ai)dai. (4b) 
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Fig. 2. Sets of  straight  lines and corresponding distr ibution functions,  
h(ai); at = angle of  rotation. (a) Parallel lines; monodisperse  distribu- 
t ion function;  (b) Lines with preferred or ientat ion:  normal  distribution 
function;  p, = 120 °, tr = 10°; (c) Randomly  or iented lines; uniform 

distribution function.  See text for fur ther  discussion. 

Figure 3 shows projection functions for sets of unit line 
segments whose initial orientations are described by the 
monodisperse (M), normal (P), and uniform distribution 
function (U). A(a)  is constant for all angles of rotation, 
a ,  if the distribution function h(ai) is uniform, that is, if 
the orientat ion of lines is random. A(a) approaches P(a)  
as the distribution function becomes narrower,  for 
example,  as the standard deviation, ~, of the normal 
distribution function [equation (3b)] decreases. If h(ai) 
is the monodisperse distribution function, A(a)  is essen- 
tially equal to P(a). 

The 'undeformed state' is here represented by a fabric 
in which the orientation of lines is random, that is, whose 
projection A(a) is constant for all a.  Homogeneous  
deformation yields a preferred orientation of lines, that 
is, A(a) is not constant anymore,  but depends on a. In 
this paper,  the function describing A(a) will be given 
and interpreted in terms of the two-dimensional strain 
ellipse. In order  to do so, projections of ellipses have to 
be considered first. 

If closed lines, that is, shapes are to be projected two 
types of projection have to be distinguished: A(a) ,  the 
total projection; B(a) ,  the simple projection or Feret  
diameter  (Fig. 4). A(a),  the total projection corresponds 
to the projection function of a set of straight line seg- 
ments by which the shape is approximated.  These need 
not be of unit length. B(a), on the other hand, is the 
difference between the maximum and the minimum 
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Fig. 3. Relative project ion function, A(a)/A (a) max,  of sets of  straigh: 
lines versus angle of  rotation a:  ap = 0°: axial ratio b/a = 0.00. M = 
monodisperse  distribution [h(ai)] ,  parallel lines; P = normal  distribu- 
tion [h(od)], lines with preferred orientat ion;  U = uniform distribution 

[h(ai)l, lines are . randomly oriented.  
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Fig. 4. P ro j cc l i on  ot  e l l ipse  that  is a p p r o x i m a t e d  by e igh t  s t r a igh t - l i ne  
s e g m e n t s :  cti 311'7 ~ = H °. To ta l  p ro j ec t i on ,  A ( a ) ,  and  s imp le  pro-  
j ec t ion .  B ( a ) ,  arc  shown  schema t i ca l l y ,  a and  b = axes  of e l l ipse :  
1 . . . s - d ig i t ized  po in t s :  x rain and  x max = m i n i m u m  and  maxi-  

m u m  x - c o o r d m a l c s  of e l l ipse .  See text  for fu r the r  d i scuss ion .  

x-coordinate ,  x max and x min,  of the shape S. In so far 
as the maxim~;m and minimum x-coordinate  of a non- 
circular shape depend on the orientat ion of the shape 
with respect to the x-axis, B(a)  is a function of the 
r o t a t i o n  a. 

B(c~) = x max (a)  - x min (a) .  (5) 

As can be seen from Fig. 4, if the shape is strictly convex 
the total project ion is always twice the simple project ion,  
irrespective of the angle of rotation,  a ,  or the curvature 
of  the outline. The projection of a set of  lines by which a 
convex shape is approximated ,  A(a ) ,  is therefore  equal 
to 2B(a) .  For elliptical shapes the simple project ion 
B(a)  is calculated f rom the axes a and b of  the ellipse and 
the or ientat ion,  ai, of the long axis, a, with respect  to the 
x-axis. As the ellipse is rotated in the x-y plane the 
simple project ion changes (Panozzo 1983). 

B(a)  - 2 \ a  z cos-" (ai  + c~) + b 2 sin 2 (ai  + a) .  (6) 

The project ion of an ellipse whose long axis is parallel to 
the x-axis, that is. ai  + a = 0% is equal to 2a and is the 
longest possible projection.  If  the long axis is parallel to 
the v-axis, that is, ai  + a = 90 ° , the project ion of the 
ellipse is equal to 2b which is the shortest  possible 
project ion,  Since ellipses are strictly convex shapes,  the 
following relation holds 

A(a)  min/A(~t  max = B(a) min/B(a)  max = b/a. (7) 

Figure 5 shows the project ion functions of  ellipses with 
various axial ratios b/a and an initial or ientat ion parallel 
to the x-axis, ai  = 0 °. Note  that ellipses whose axial ratio 
b/a equals0.00,  are lines. Ifai > 0 ° or ai  < 0 °. the curves 
are shifted to the left or right, respectively. The angle of  
initial orientation, ai, is obta ined f rom the minimum and 
maximum value of A(a )  through the following relations 

~i = 90 ° - a min (8a) 
ai = 180 ° - a max. (8b) 
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Fig. 5. S imple  p r o j e c t i o n ,  B ( a ) ,  of e l l ipses .  R e l a t i v e  length  o!  p ro jec-  
t ion ,  B ( a ) / B ( a )  max,  vs angle  of ro t a t ion ,  a ,  for e l l ipses  ot  vur ious  

axia l  r a t ios  h/a: oa = 0 ° 

P R O C E D U R E  

The first step in the analysis by the proposed method 
is to digitize the lines that represent  the surface of 
interest on a digitizing table. Strings of x-y  coordinates,  
which represent  one continuous line each, are transfer- 
red to a For t ran p rog rammable  computer .  If k is the 
number  of  points that are digitized on a given line, k - 1 
is the number  of  straight line segments  by which the line 
is approximated ,  The  For t ran p rogram S U R F O R  (Sur- 
face orientat ion) carries out the proposed  analysis. The 
program asks for the size of increments  Ac~ of the angle 
of  rotation. Aa is chosen according to the desired angular 
resolution. In the course of the analysis, the lines are 
rota ted through an angle of 180% therefore  the number ,  
n, of angles ~ at which the total project ion of the line 
fabric is to be evaluated is equal to 180°/A~. It is unneces- 
sary to rotate  the shapes through an angle of 360 ° 
because A ( a )  = A ( a  + 180°). At each of the n increments  
of rotation,  the total project ion A(a )  is calculated by 
summing up the project ion of all the straight line seg- 
ments.  

As an example ,  the shape shown in Fig, 4 is digitized 
and analyzed by the p rogram S U R F O R .  The number  of 
strings is 1, the number  of  digitized coordinate  points is 
9, as point 1 has to be digitized twice. If instead of one 
cont inuous line the 8 individual lines are digitized sepa- 
rately, 8 strings with 2 points each are created.  However ,  
the number  of line segments  (8) and the total project ion 
A(a),  are the same in both cases. Figure 6 shows output  
for analysis with increments  of rotat ion,  Aa, of 10 °. 
Benea th  name,  date and magnification appears  the 
number  of straight line segments  used for the analysis. 
Values of total length of project ion,  mean  length, vari- 
ance and standard deviation are printed for each incre- 
ment  of rotation. The histogram represents  the length of 
total project ion as horizontal  bars vs a ,  the angle of 
rotation.  Figure 6 shows 18 values of A ( a )  evaluated at a 
= I0 °. 20 °. . . .  180 °, At  a = 60 ° the project ion is minimal,  
that is the preferred orientat ion,  ap ,  of the eight lines, 
which is equivalent to the orientat ion,  ai, of the long axis 
of the ellipse, is 30 ° [see equat ion (8a)]. 



218 R. PANOZZO 

88.*? ELLB.ROS 

LENGTH OF STRAIGHT LINE SEGMENTS IN MM 

DATE~ 8-82 
MAGNIFICATION~ 1 TIMES 

NUMBER OF PROJEGTED LINES SEGMENTS: 

ANGLE TOTAL MEAN VARIANCE SToBEV.  

10 7 2 4 . 3 8 7 7  90.54846 2924.01562 54,07417 
20 691.5236 86.44045 1803.02283 42.46202 
30  6 3 7 . 6 5 5 9  7 9 . 7 0 6 9 9  1247 .18213  3 5 . 3 1 5 4 7  
40  5 6 4 . 4 2 0 7  7 0 . 5 5 2 5 9  1 3 2 3 , 5 0 9 6 4  3 6 . 3 8 0 0 7  
50 5 2 3 . 7 0 2 1  6 ~ . 2 1 2 7 6  1323.27502 3 6 . 3 7 6 8 5  
60  521.7486 65.21857 834.60577 28.88954 
70 5 2 3 . 9 4 8 0  6 5 . 2 4 3 5 0  1 3 1 6 . 7 5 9 6 4  3 6 . 2 8 7 1 8  
80  5 6 4 . 1 3 6 5  7 0 , 5 1 2 0 7  1 3 2 5 . 4 7 2 5 3  3 6 , 4 0 7 0 4  
90  6 3 7 . 5 4 2 2  7 9 . 6 9 2 7 8  1244.69861 35.28028 

100  6 9 1 . 5 8 3 9  8 6 . 4 4 7 9 8  1 7 9 5 . 7 6 7 8 2  4 2 . 3 7 6 5 0  
1 1 0  7 2 4 . 6 1 9 9  9 0 , 5 7 7 4 9  2 9 1 2 . 2 3 9 5 0  5 3 . 9 6 5 1 7  
120 7 7 8 . 9 1 8 7  9 7 , 3 6 4 8 4  3 2 8 9 , 1 8 2 3 7  5 7 . 3 5 1 3 9  
130 845,3282 105.66603 2859.47021 53.47401 
140  8 8 6 . 0 6 2 5  1 1 0 . 7 5 7 8 1  2 5 7 ~ . 7 4 2 9 2  5 0 . 7 7 1 4 8  
150 8 9 9 . 8 8 4 4  112.48555 2 4 7 7 . 9 6 4 3 6  4 9 . 7 7 9 1 6  
160 8 8 6 . 3 7 4 0  110.79675 2572.16577 5 0 , 7 1 6 5 3  
170 845,9417 105.74271 2848.98999 53.37593 
180 7 7 9 . 8 1 5 6  9 7 . 4 7 6 9 5  3275.06006 57.22814 

HISTOGRAM: TOTAL LENGTH OF PROJECTION VERSUS ANGLE OF ROTATION 

9 0 0  MM 

10 *888**8*8888888*88*8888888*88888*8888*** 
2 0  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
30  . 8 . 8 8 8 . 8 8 8 8 8 8 8 8 8 . 8 8 8 . 8 8 8 8 * 8 8 8 8 8 8 8 8 .  
40  ::::::::::::::::::::::::::::::: 
50  . 8 8 8 8 8 . 8 8 8 8 8 8 ~ * . 8 . ~ 8 . 8 8 . ~ 8 8 .  
60  8 8 8 8 8 * 8 8 8 8 8 . 8 8 8 8 8 8 8 8 8 8 * 8 8 8 8 .  
70 8 * 8 * 8 * 8 8 * 8 * 8 * 8 * * 8 8 * 8 8 * 8 8 8 8 8 8  
80 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
90  8 8 8 * * * * 8 8 8 8 8 8 8 8 8 * 8 8 * 8 * * 8 8 8 8 8 8 8 8 8 8 8 8  

1 0 0  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
llO 8 8 8 8 8 8 1 8 1 8 8 8 8 8 8 8 8 1 8 8 8 8 * 8 8 8 1 8 8 8 1 8 8 8 1 8 8 8 8 8  
120 8 * 8 8 * 8 8 8 8 8 8 * 8 8 8 8 * 8 8 8 8 8 8 8 8 * 8 8 8 * 8 * 8 8 8 8 8 8 8 8 8 8 *  
1 3 0  8 8 8 . * . 8 8 8 8 8 8 8 8 8 8 8 8 . 8 8 . 8 . . 8 8 8 8 8 8 . 8 8 8 . . 8 8 8 8 * 8 8 8 8  
1 4 0  . 8 8 8 8 8 8 * . 8 8 8 * 8 8 * . 8 8 8 8 8 * 8 8 8 8 8 8 . 8 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
1 5 0  888888888888 .888 .8888888888888*88 .*888888888888888  
1 6 0  . 8 8 8 8 * 8 8 . 8 8 8 8 8 8 8 8 8 8 8 8 8 . 8 8 * 8 8 . 8 8 8 8 8 8 8 8 8 8 . 8 . 8 8 8 . 8 8 .  
1 7 0  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
180  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Fig. 6. Sample ou tpu t  of  compu te r  program S U R F O R .  Shape analyzed 
is ellipse shown in Fig. 4; increment  Aa = 10 °. See text for fur ther  

discussion. 

INTERPRETATION OF THE PROJECTION 
FUNCTION IN TERMS OF TWO-DIMENSIONAL 

STRAIN 

It has to be demonstrated that the axes a and b of the 
finite strain ellipse and the angle ai between a and the 
positive x-axis, corresponding to 0 (Ramsay 1967), can 
be derived from the curve A(c~) of a deformed fabric. 

Consider a pattern of randomly oriented lines (Fig. 
7b). These lines can be linked such that they form an 
isometric polygon. The latter approaches the shape of a 
circle if the number of line segments is large (Fig. 7a). 
Owing to the small number (24) of straight-line segments 
the representations in Fig. 7 are of schematic value only. 
The total projection A(a) of the circle and of the ran- 
domly oriented lines is the same, as is shown in Fig. 7(c). 
A(a) is constant for all c~ and is equal to twice the 
diameter of the circle. If the fabrics shown in Figs. 7(a) 
& (b) are subjected to the same homogeneous deforma- 
tion, the fabrics shown in Figs. 7(d) & (e) are obtained. 
The deformation affects the individual line segments 
according to their orientation ~i ,  irrespective of their 
position in the x - y  plane. Therefore, the projection 
function A(u) of the deformed random line pattern and 
the deformed circle are identical. The projection func- 
tion is shown in Fig. 7(f). By definition, the shape shown 
in Fig. 7(d) is the finite strain ellipse. For an ellipse, A(c~) 
is equal to 2B(a); and the ratio A(a) min/A(a) max is 
equal to the axial ratio b/a of the ellipse. Thus the ratio 
A(~) min/A(c~) max of the deformed randomly oriented 
line pattern is equal to the axial ratio of the finite strain 
ellipse. 

The orientation of the strain ellipse with respect to the 
reference coordinate system is given by equation (8). In 
Fig. 7(f), a min = 180"~and ~ max = 90°; therefore ap 
or 0 is 90 °. The ratio A(a) min/A(a) max is 0.50. The 
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Fig. 7. Correspondence  be tween  randomly posit ioned lines and closed lines. (a) and (bl Undefo rmed  fabric. 
(c) Compu te r  output ,  (d) and (e) Defo rmed  fabrics. (f) Compute r  output .  Finite strain axes: a = 1.4: b = 0 7: angle ff = 9( °: 

increment  Aa = 10 °. See text for fur ther  discussion. 
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absolute magnitude of the ellipse axes, b and a, can be 
determined only if at least one elongation can be 
measured.  Whether  this is possible in practice depends 
on whether  the undeformed fabric can be observed and 
compared to the deformed one. 

Deformation of the fabrics shown in Figs. 7(a) or (b) 
changes both the orientation and the length of the line 
segments. Thus the individual line segments shown in 
Figs. 7(d) or (e) are not of unit length anymore.  This 
does not invalidate the analysis because change of length 
of line segments is taken into account in that the lengths 
of the individual segments, rather than their number  are 
added. Indeed,  if the deformation of the fabrics shown 
in Figs. 7(a) & (b) consisted of rigid rotation of the lines 
only, leaving the lengths of lines unaltered,  the method 
proposed here would be inapplicable. 

APPLICATION AND DISCUSSION 

It is important  to define the "undeformed state' of a 
rock as it is the reference state with respect to which the 
finite strain is defined. The 'undeformed state' is often 
equated to a state of randomness or isotropy, to an 
absence of preferred orientation or even an absence of 
fabric. But a general randomness or general preferred 
orientat ion does not exist. It has to be specified whether  
the randomness pertains to position or to orientat ion.  A 
fabric of isotropic anticlustered positions of centrepoints  
of particles (Fry 1979) and of random orientations of 
particle surface need not coincide. Two aspects of the 
definition of the undeformed state merit special atten- 
tion: (a) the distinction of random position of particles vs 
random orientation of particle surface and (b) the dis- 
tinction of preferred orientation of volumes vs preferred 
orientat ion of surface. 
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Isotropic position of  particles versus random orientation 
of  surface 

A method of strain analysis based on anticlustered 
isotropic spatial distributions of centrepoints  has been 
discussed by (Fry 1979). Such spatial distributions exist 
in nature because particles or grains have finite dimen- 
sions, a fact which inhibits centrepoints from lying within 
a distance smaller than one grain diameter.  The concept 
of anticlustered spatial distributions is here extended to 
cases where the particles have no volume at all but are 
small planar surface elements. 

Deformat ion changes the spatial relationship between 
centrepoints of particles or surface elements by shorten- 
ing the distances parallel to the direction of compression 
and by lengthening them parallel to the direction of 
extension. If one assumes that the change of relative 
position of centrepoints reflects the state of deformation,  
the latter can be determined by using the method 
described in Fry's paper. In many cases, this type of bulk 
deformation is also reflected by a change of shape, for 
example,  flattening of the particles contained in the rock 
volume. However .  if the viscosity of particles is much 
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Fig. 8. Comparison of project ion method with method after Fry 
(1979). Analysed line pattern (left); plot of centrepoints (top right): 
output of program SURFOR (bottom right). (a) Isotropic position. 
random orientation. (b) Anisotropic position, random orientation. (c) 
Isotropic position• preferred orientation. (d) Anisotropic position. 

preferred orientation. See text for further discussion. 

higher than the viscosity of the matrix, the particles 
change their relative position with respect to one another  
without appreciable change in shape~ In such cases the 
strain determined from the deformation of the particles 
does not reflect the bulk strain of the rock. 

Figure 8 shows four patterns of short lines (e.g. cracks) 
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in the x-y plane. To the right of each the results of two 
different methods of strain analysis are presented: Fry's 
method (top) and the projection method described here 
(bottom). If the is•tropic distribution of centrepoints is 
used to define the undeformed state, Figs. 8(a) & (c) 
appear to be undeformed and Figs. 8(b) & (d) appear to 
be strained, with the finite strain ellipse having an axial 
ratio b/a of 0.50. 

Based on the concept of random orientation of lines, 
Fig. 8 is interpreted differently. If the preferred orienta- 
tion of lines is assumed to represent bulk strain, Figs. 
8(a) & (b) appear undeformed whereas Figs. 8(c) & (d) 
display a finite strain, where b/a is equal to 0.50. Recon- 
struction of the undeformed state can be attempted by 
reversing the deformation. 'Unstraining' Fig. 8(d) by 
inverting the strain obtained from Fry's method or the 
one obtained from the projection method produces an 
'undeformed'  state equivalent to Fig. 8(a). But if the 
strains of Figs. 8(b) & (c) as determined by the two 
different methods are reversed, the resulting 'un- 
strained' patterns are not identical nor do they corre- 
spond to the fabric shown in Fig. 8(a). 

This demonstrates clearly the necessity of defining the 
undeformed state in terms of either is•tropic position or 
random orientation of surface. Although the two often 
coincide, this is not necessarily so; values of strain that 
are obtained by the two different methods may be 
different, reflecting an initial fabric or strain partitioning 
during deformation. If strain measurements of both 
methods coincide one can be more confident that the 
obtained values reflect bulk strain. In how far one of the 
two conditions, isotropy of position or random orienta- 
tion of surface, is at all realized in nature is yet another 
question which will not be addressed here. 

Preferred orientation of surface vs preferred orientation 
of shape 

In any strain analysis it is assumed that the deforma- 
tion of rocks is homogeneous within the volume of 
interest, and that the geometrical elements that are 
affected by it have existed before deformation started. 
Elements that are newly created in the course of defor- 
mation, for example, pressure-solution surfaces, grain 
boundaries and cracks, have to be excluded from the 
analysis, 

In absence of contradictory evidence it is often 
assumed that grains or particles of the undeformed rock 
are isometric. The grain shapes of the deformed rocks 
are then approximated by ellipses, and the grain shapes 
of the undeformed rock are assumed to be circles. 
Alternatively, the undeformed state may be defined by 
non-is•metric shapes whose long axes are randomly 
oriented. In general, both of these definitions of the 
undeformed state are equivalent to a state of random 
orientation of surface. Therefore, if the state of random 
orientation of surface and the state of isometric grain 
shapes or random orientation of non-is•metric particles 
coincide, the projection method described here should 
yield the same analytical results as any shape method. 
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Fig. 9. Deformat ion  of a set of  ellipses by simple shear. (a) R a n d o m  
orientat ion of long axes: normal  distribution of axial ratios: b / a  = 0 . 5 0  

7- 0.20; uniform distribution of lengths of long axes: I{).D0 < a < 1.00} : 
ant•clustered is•tropic distribution of centrepoints .  (b) D e f o r m e d  
fabric: tO = 45 °. (c) Projection function of deformed ellipses: ~o~ = 10 °. 

See text for fur ther  discussion. 

There are cases where the alternative use of the pro- 
posed method for strain analysis may be favoured. 

(1) Strain analysis by any one of the shape methods 
requires ellipses to be fitted to the shapes. If the outlines 
are only remotely elliptical the fit of ellipses may be 
difficult and/or biased. The projection method requires 
no such fit. 

(2) If the strain is small, deviation from sphericity is 
small and a large number of measurements of ellipse 
axes is needed. By digitizing the outlines as is proposed 
here, a large data base can be assembled in a short time. 

(3) The analysis of strain from a pattern of deformed 
ellipses is made easy when compared with shape 
methods that make use of axial ratios and orientation of 
long axes (e.g. Ramsay 1967, Shimamoto & Ikeda 1976). 
Figure 9(a) shows a set of ellipses of different size and 
axial ratio. They were created using a random number 
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generator:  distribution of angles ai and of lengths is 
uniform, distribution of axial ratios is normal with the 
average axial ratio being 0.50 ~- 20. When deformed by 
simple shear, the pattern shown in Fig. 9(b) is created. 
Digitization and evaluation of the fabric take about 
20-30 minutes after which the computer  output shown in 
Fig. 9(c) is obtained. A(a)  min/A(a) max = 2300 mm/ 
6200 mm = 0.37. The minimum of A(a)  is at 55-60°; 
from this orientation up of the long axis of the strain 
ellipse is inferred to be 30-35 ° . Following equations 
(3-67) and (3-70) given by (Ramsay 1967), and using ~ = 
45 ° , the axial ratio of the strain ellipse comes out to be 
0.38, and the angle O, which corresponds to ap, comes 
out to be 32 ° . Better coincidence of the results of 
S U R F O R  and the theoretical values can be achieved if 
smaller increments. Aa, of rotation are chosen for 
S U R F O R .  

(4) The shape methods are restricted to elliptical 
shapes. The projection method on the other hand is 
generally applicable whether shapes are elliptical or not. 
Since only the orientations of line segments are con- 
sidered it does not even matter whether the lines are 
open or closed or whether they are individual lines such 
as cracks or a connected network such as grain bound- 
aries in crystalline rocks. Using this method,  strain 
analysis is possible even if the long dimension of particles 
is larger than the field of observation on a thin section. 

SUMMARY AND CONCLUSIONS 

A new method for the analysis of two-dimensional 

strain has been introduced. The method is based on 
approximating, that is, digitizing outlines of shapes or 
other lines by sets of small straight lines. The latter are 
projected on the x-axis while being rotated through an 
angle of 180 ° . From the projection function A(a) 
(= total length of projection vs angle of rotation) the 
axes of the two-dimensional finite strain ellipse and their 
orientation with respect to a reference x-y  coordinate 
system is derived very easily. The method is sensitive to 
the orientation of lines but not to their position in the x-v 
plane. The method is therefore complementary to Fry's 
(1979) method which uses the anisotropy of an anticlus- 
tered spatial distribution of centrepoints as a measure of 
strain. 

By using digitized data and the Fortran program 
S U R F O R ,  strain analysis is achieved in a short time. 
The proposed method is general in that it applies to all 
lines or outlines of shapes. Finite strains can be derived 
from all sets of shapes or line systems, including, for 
example sets of different ellipses, provided their surface 
was initially randomly oriented. 
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